

## Cambridge International AS & A Level

**CANDIDATE  
NAME**

CENTRE  
NUMBER

|  |  |  |  |  |
|--|--|--|--|--|
|  |  |  |  |  |
|--|--|--|--|--|

**CANDIDATE  
NUMBER**

|  |  |  |  |
|--|--|--|--|
|  |  |  |  |
|--|--|--|--|



CHEMISTRY

9701/51

## Paper 5 Planning, Analysis and Evaluation

May/June 2024

**1 hour 15 minutes**

You must answer on the question paper.

No additional materials are needed.

## INSTRUCTIONS

- Answer **all** questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do **not** use an erasable pen or correction fluid.
- Do **not** write on any bar codes.
- You may use a calculator.
- You should show all your working and use appropriate units.

## INFORMATION

- The total mark for this paper is 30.
- The number of marks for each question or part question is shown in brackets [ ].
- The Periodic Table is printed in the question paper.
- Important values, constants and standards are printed in the question paper.

1 Titration can be used to determine the concentration of dissolved oxygen in samples of river water.

The procedure for the experiment is given.

**step 1** Use five  $50\text{ cm}^3$  graduated syringes, **A**, **B**, **C**, **D** and **E**, to collect five separate  $30.0\text{ cm}^3$  samples of river water.

**step 2** In the laboratory, carefully add  $5.0\text{ cm}^3$  of  $0.220\text{ mol dm}^{-3}$  manganese(II) sulfate,  $\text{MnSO}_4\text{(aq)}$ , into syringe **A** and mix well.

**step 3** Add  $5.0\text{ cm}^3$  of alkaline aqueous potassium iodide into syringe **A** and mix well.

**step 4** Add  $10.0\text{ cm}^3$  of dilute sulfuric acid into syringe **A** and mix well.

**step 5** Transfer the contents of syringe **A** into a  $150\text{ cm}^3$  conical flask. Rinse syringe **A** using  $10\text{ cm}^3$  of distilled water and add washings to the conical flask.

**step 6** Carry out **one** accurate titration of all the contents in the conical flask with  $0.00200\text{ mol dm}^{-3}$  aqueous sodium thiosulfate,  $\text{Na}_2\text{S}_2\text{O}_3\text{(aq)}$ , using starch indicator.

Repeat steps 2–6 for the samples in syringes **B–E**.

**(a)** Aqueous sodium thiosulfate can be prepared from  $\text{Na}_2\text{S}_2\text{O}_3 \cdot 5\text{H}_2\text{O(s)}$ .

**(i)** Determine the mass, in g, of  $\text{Na}_2\text{S}_2\text{O}_3 \cdot 5\text{H}_2\text{O(s)}$  required to prepare  $500.0\text{ cm}^3$  of  $0.00200\text{ mol dm}^{-3}$   $\text{Na}_2\text{S}_2\text{O}_3\text{(aq)}$ .

$$\text{mass of } \text{Na}_2\text{S}_2\text{O}_3 \cdot 5\text{H}_2\text{O(s)} = \dots \text{ g} \quad [1]$$

**(ii)** Identify the piece of apparatus that should be used to prepare  $500.0\text{ cm}^3$  of  $0.00200\text{ mol dm}^{-3}$   $\text{Na}_2\text{S}_2\text{O}_3\text{(aq)}$  after the required mass of  $\text{Na}_2\text{S}_2\text{O}_3 \cdot 5\text{H}_2\text{O(s)}$  has been weighed out.

..... [1]

**(b)** The graduations on each syringe are every  $1.0\text{ cm}^3$ .

**(i)** Calculate the percentage error in the measurement of  $5.0\text{ cm}^3$  of alkaline aqueous potassium iodide by the syringe.

Show your working.

$$\text{percentage error} = \dots \quad [1]$$

(ii) Place **one** tick (✓) in each row in Table 1.1 to show the effect, if any, of using a larger volume of alkaline aqueous potassium iodide.

Table 1.1

|                                     | greater effect | no effect | smaller effect |
|-------------------------------------|----------------|-----------|----------------|
| uncertainty of the measurement      |                |           |                |
| percentage error of the measurement |                |           |                |

[1]

(c) The sample in the conical flask and the prepared solution of sodium thiosulfate are provided. Describe the following procedures for the experiment using syringe A.

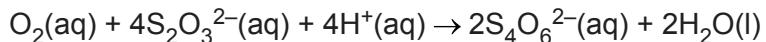
(i) Preparing the clean burette before taking any readings.

.....  
 .....  
 .....  
 .....  
 ..... [2]

(ii) Carrying out the **one** accurate titration in step 6.

.....  
 .....  
 .....  
 .....  
 .....  
 ..... [2]

(d) Suggest why the reaction mixture is mixed well in steps 2–4.


.....  
 ..... [1]

(e) Draw a table for recording the titration results for the five samples in syringes A–E.

[2]

[Turn over

(f) The overall reaction taking place in the experiment is shown.



A student carries out the experiment and determines the mean titre to be  $12.65\text{ cm}^3$ .

Calculate the concentration, in  $\text{mol dm}^{-3}$ , of dissolved oxygen in the river water.

concentration of dissolved oxygen = .....  $\text{mol dm}^{-3}$  [2]

(g) Freshly distilled water does **not** contain any dissolved oxygen.

A student decides to run the procedure on a sample of freshly distilled water and at the end obtains a value of  $2.26 \times 10^{-5}\text{ mol dm}^{-3}$  dissolved oxygen.

(i) Suggest why the student did **not** get a value of  $0\text{ mol dm}^{-3}$ . Assume the procedure was carried out correctly.

..... [1]

(ii) Suggest how the value of  $2.26 \times 10^{-5}\text{ mol dm}^{-3}$  could be used to improve the answer in (f).

..... [1]

(h) Suggest why this method is unsuitable for samples of tap water that have been purified by chlorination and so contain  $\text{Cl}_2(\text{aq})$ .

..... [1]

[Total: 16]

2 The activation energy,  $E_A$ , for the reaction between dilute hydrochloric acid,  $\text{HCl}(\text{aq})$ , and aqueous sodium thiosulfate,  $\text{Na}_2\text{S}_2\text{O}_3(\text{aq})$ , can be determined by an initial rates method.



The solid sulfur formed is seen as a white suspension in the reaction mixture. The reactants are mixed and the time,  $t$ , for a fixed quantity of sulfur to be formed is recorded.

A measure of the initial rate of the reaction is  $\frac{1}{t}$ .

Standard solutions of  $0.100 \text{ mol dm}^{-3}$   $\text{Na}_2\text{S}_2\text{O}_3(\text{aq})$  and  $0.500 \text{ mol dm}^{-3}$   $\text{HCl}(\text{aq})$  are supplied.

Measurements are taken for a series of temperatures using the following procedure.

**step 1** A thermostatically controlled water bath is set up.

**step 2** A  $100 \text{ cm}^3$  conical flask is labelled **A** and a second  $100 \text{ cm}^3$  conical flask is labelled **B**.

**step 3**  $10.00 \text{ cm}^3$  of  $0.100 \text{ mol dm}^{-3}$   $\text{Na}_2\text{S}_2\text{O}_3(\text{aq})$  is added to flask **A**. Flask **A** is placed in the water bath.

**step 4**  $10 \text{ cm}^3$  of  $0.500 \text{ mol dm}^{-3}$   $\text{HCl}(\text{aq})$  is added to flask **B**. Flask **B** is placed in the same water bath.

**step 5** Wait for 10 minutes.

**step 6** Flask **A** is removed from the water bath and placed on a tile marked with a black cross.

**step 7** The contents of flask **B** are added to flask **A** and a timer started.

**step 8** The timer is stopped when the black cross is no longer visible. The time is recorded.

(a) Suggest a reason why it is necessary to wait for 10 minutes in step 5.

..... [1]

(b) The procedure does not mention how a value for the temperature of the mixture during the reaction is obtained.

(i) State the temperature measurements that should be taken and at which stage in the procedure they should be taken.

..... [1]

(ii) State how to use the temperature measurements to determine an accurate value for the temperature of the mixture during the reaction.

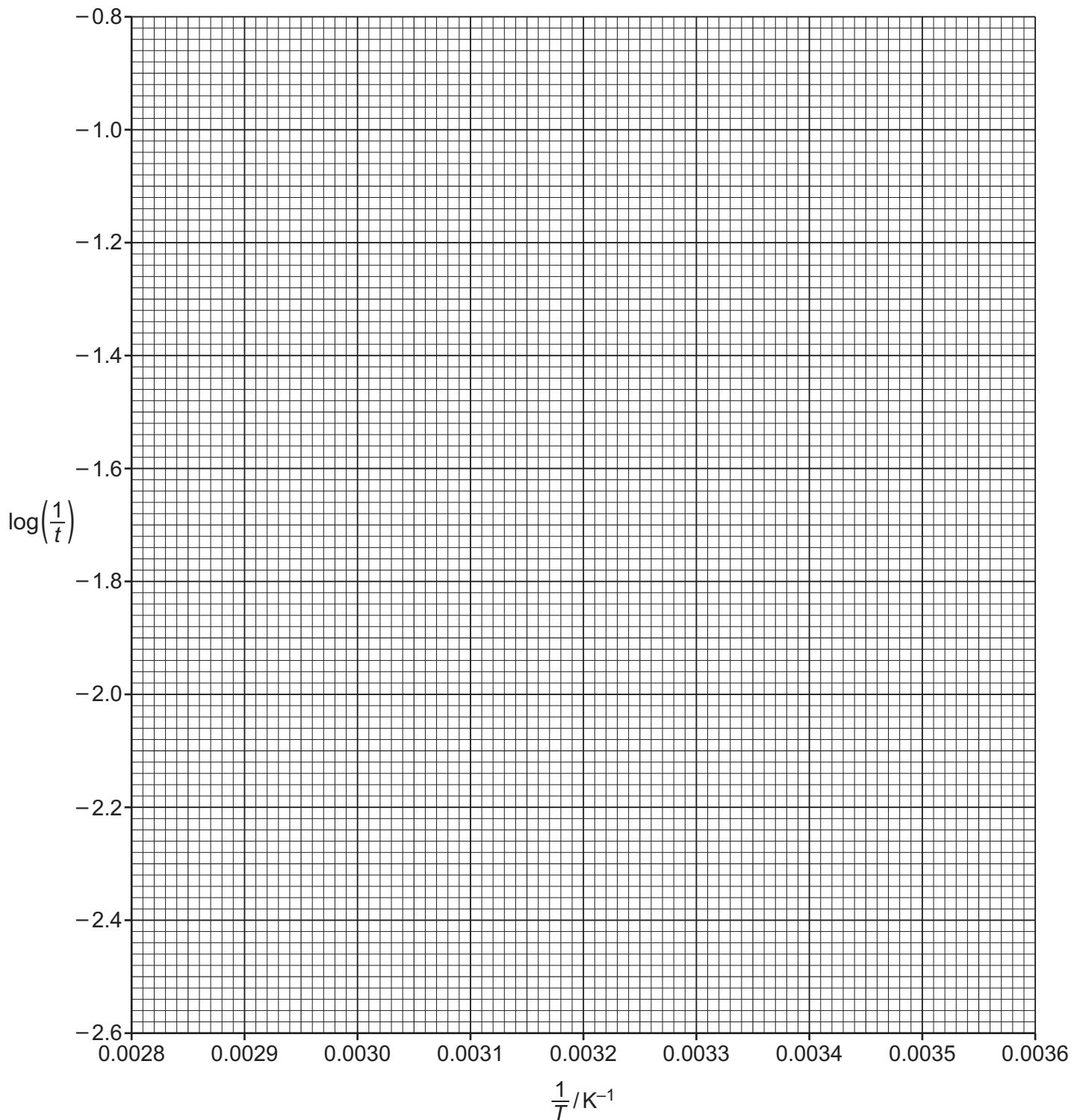
..... [1]

(c) A student carries out the procedure at three different temperatures and records the measurements in Table 2.1.

Complete Table 2.1. Record values for temperature to the nearest whole number and the values for  $\frac{1}{t}$  to **four** decimal places.

**Table 2.1**

| temperature, $T/^\circ\text{C}$ | time, $t/\text{s}$ | temperature, $T/\text{K}$ | $\frac{1}{t}/\text{s}^{-1}$ |
|---------------------------------|--------------------|---------------------------|-----------------------------|
| 15                              | 176                |                           |                             |
| 24                              | 92                 |                           |                             |
| 32                              | 62                 |                           |                             |


[2]

(d) A second student carries out the procedure at six different temperatures and analyses their data to give the results in Table 2.2.

**Table 2.2**

| $\frac{1}{T}/\text{K}^{-1}$ | $\log\left(\frac{1}{t}\right)$ |
|-----------------------------|--------------------------------|
| 0.00353                     | -2.43                          |
| 0.00336                     | -1.99                          |
| 0.00325                     | -1.68                          |
| 0.00314                     | -1.47                          |
| 0.00302                     | -1.21                          |
| 0.00287                     | -0.82                          |

(i) Use the results from Table 2.2 to plot a graph on the grid in Fig. 2.1 to show the relationship between  $\log\left(\frac{1}{t}\right)$  and  $\frac{1}{T}$ . Use a cross (x) to plot each data point. Draw a line of best fit.



**Fig. 2.1**

[2]

(ii) Determine the gradient of your line of best fit in Fig. 2.1. State the coordinates of both points you use in your calculation. These must be selected from your line of best fit. Give the gradient to **three** significant figures.

coordinates 1 ..... coordinates 2 .....

gradient = ..... K  
[2]

(iii) An equation relating time and temperature variables is shown.

$$\log\left(\frac{1}{t}\right) = -\frac{0.434E_A}{RT} + \text{constant}$$

Determine the activation energy,  $E_A$ , of this reaction using this equation and your answer to (d)(ii).

(If you were unable to find the gradient in (d)(ii), then use the value  $-3.21 \times 10^3$  K. This is **not** the correct answer.)

Include units in your answer.

Show your working.

$E_A$  = .....

units = .....  
[3]

(iv) Use your graph to state whether the results from the experiment are reliable. Justify your answer.

.....  
..... [1]

(e) Suggest a change to **one** controlled variable that the student could make so that the time measured for a given temperature is shorter.

.....  
..... [1]

[Total: 14]





### Important values, constants and standards

|                                 |                                                                                                                                           |
|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| molar gas constant              | $R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$                                                                                              |
| Faraday constant                | $F = 9.65 \times 10^4 \text{ C mol}^{-1}$                                                                                                 |
| Avogadro constant               | $L = 6.022 \times 10^{23} \text{ mol}^{-1}$                                                                                               |
| electronic charge               | $e = -1.60 \times 10^{-19} \text{ C}$                                                                                                     |
| molar volume of gas             | $V_m = 22.4 \text{ dm}^3 \text{ mol}^{-1}$ at s.t.p. (101 kPa and 273 K)<br>$V_m = 24.0 \text{ dm}^3 \text{ mol}^{-1}$ at room conditions |
| ionic product of water          | $K_w = 1.00 \times 10^{-14} \text{ mol}^2 \text{ dm}^{-6}$ (at 298 K (25 °C))                                                             |
| specific heat capacity of water | $c = 4.18 \text{ kJ kg}^{-1} \text{ K}^{-1}$ (4.18 J g <sup>-1</sup> K <sup>-1</sup> )                                                    |

The Periodic Table of Elements

| 1                    |           | 2             |   | Group |   |    |    |    |    |    |    |    |    |    |    |
|----------------------|-----------|---------------|---|-------|---|----|----|----|----|----|----|----|----|----|----|
| 13                   |           | 14            |   | 15    |   | 16 |    | 17 |    | 18 |    |    |    |    |    |
| 3                    | 4         | 5             | 6 | 7     | 8 | 9  | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 |
| Li                   | Be        |               |   |       |   |    |    |    |    |    |    |    |    |    |    |
| lithium              | beryllium |               |   |       |   |    |    |    |    |    |    |    |    |    |    |
| 6.9                  | 9.0       |               |   |       |   |    |    |    |    |    |    |    |    |    |    |
| 11                   | 12        | Mg            |   |       |   |    |    |    |    |    |    |    |    |    |    |
|                      |           | magnesium     |   |       |   |    |    |    |    |    |    |    |    |    |    |
| 23.0                 | 24.3      |               |   |       |   |    |    |    |    |    |    |    |    |    |    |
| 19                   | 20        | Sc            |   |       |   |    |    |    |    |    |    |    |    |    |    |
|                      |           | scandium      |   |       |   |    |    |    |    |    |    |    |    |    |    |
| 39.1                 | 40.1      |               |   |       |   |    |    |    |    |    |    |    |    |    |    |
| K                    | Ca        | Ti            |   |       |   |    |    |    |    |    |    |    |    |    |    |
|                      |           | titanium      |   |       |   |    |    |    |    |    |    |    |    |    |    |
| 39.1                 | 40.1      |               |   |       |   |    |    |    |    |    |    |    |    |    |    |
| 37                   | 38        | Y             |   |       |   |    |    |    |    |    |    |    |    |    |    |
|                      |           | yttrium       |   |       |   |    |    |    |    |    |    |    |    |    |    |
| 85.5                 | 87.6      | Zr            |   |       |   |    |    |    |    |    |    |    |    |    |    |
|                      |           | zirconium     |   |       |   |    |    |    |    |    |    |    |    |    |    |
| 85.5                 | 87.6      |               |   |       |   |    |    |    |    |    |    |    |    |    |    |
| 55                   | 56        | Hf            |   |       |   |    |    |    |    |    |    |    |    |    |    |
|                      |           | hafnium       |   |       |   |    |    |    |    |    |    |    |    |    |    |
| 132.9                | 137.3     | Ba            |   |       |   |    |    |    |    |    |    |    |    |    |    |
|                      |           | barium        |   |       |   |    |    |    |    |    |    |    |    |    |    |
| 132.9                | 137.3     |               |   |       |   |    |    |    |    |    |    |    |    |    |    |
| 87                   | 88        | Rf            |   |       |   |    |    |    |    |    |    |    |    |    |    |
|                      |           | rutherfordium |   |       |   |    |    |    |    |    |    |    |    |    |    |
|                      |           |               |   |       |   |    |    |    |    |    |    |    |    |    |    |
| Key                  |           |               |   |       |   |    |    |    |    |    |    |    |    |    |    |
| atomic number        |           |               |   |       |   |    |    |    |    |    |    |    |    |    |    |
| atomic symbol        |           |               |   |       |   |    |    |    |    |    |    |    |    |    |    |
| name                 |           |               |   |       |   |    |    |    |    |    |    |    |    |    |    |
| relative atomic mass |           |               |   |       |   |    |    |    |    |    |    |    |    |    |    |
| 57                   | 58        | La            |   |       |   |    |    |    |    |    |    |    |    |    |    |
|                      |           | lanthanum     |   |       |   |    |    |    |    |    |    |    |    |    |    |
| 138.9                | 140.1     |               |   |       |   |    |    |    |    |    |    |    |    |    |    |
| 89                   | 90        | Th            |   |       |   |    |    |    |    |    |    |    |    |    |    |
|                      |           | thorium       |   |       |   |    |    |    |    |    |    |    |    |    |    |
| 232.0                | 231.0     |               |   |       |   |    |    |    |    |    |    |    |    |    |    |
| lanthanoids          |           |               |   |       |   |    |    |    |    |    |    |    |    |    |    |
| 60                   | 61        | Pm            |   |       |   |    |    |    |    |    |    |    |    |    |    |
|                      |           | neodymium     |   |       |   |    |    |    |    |    |    |    |    |    |    |
| 144.2                | 140.9     |               |   |       |   |    |    |    |    |    |    |    |    |    |    |
| 91                   | 92        | Pa            |   |       |   |    |    |    |    |    |    |    |    |    |    |
|                      |           | protactinium  |   |       |   |    |    |    |    |    |    |    |    |    |    |
| 231.0                | 232.0     |               |   |       |   |    |    |    |    |    |    |    |    |    |    |
| actinoids            |           |               |   |       |   |    |    |    |    |    |    |    |    |    |    |
| 5                    | 6         | B             |   |       |   |    |    |    |    |    |    |    |    |    |    |
|                      |           | boron         |   |       |   |    |    |    |    |    |    |    |    |    |    |
| 10.8                 | 12.0      |               |   |       |   |    |    |    |    |    |    |    |    |    |    |
| 13                   | 14        | Si            |   |       |   |    |    |    |    |    |    |    |    |    |    |
|                      |           | silicon       |   |       |   |    |    |    |    |    |    |    |    |    |    |
| 27.0                 | 28.1      |               |   |       |   |    |    |    |    |    |    |    |    |    |    |
| 5                    | 6         | C             |   |       |   |    |    |    |    |    |    |    |    |    |    |
|                      |           | carbon        |   |       |   |    |    |    |    |    |    |    |    |    |    |
| 12.0                 | 14.0      |               |   |       |   |    |    |    |    |    |    |    |    |    |    |
| 13                   | 14        | Ge            |   |       |   |    |    |    |    |    |    |    |    |    |    |
|                      |           | germanium     |   |       |   |    |    |    |    |    |    |    |    |    |    |
| 72.6                 | 74.9      |               |   |       |   |    |    |    |    |    |    |    |    |    |    |
| 13                   | 14        | As            |   |       |   |    |    |    |    |    |    |    |    |    |    |
|                      |           | arsenic       |   |       |   |    |    |    |    |    |    |    |    |    |    |
| 79.0                 | 79.9      |               |   |       |   |    |    |    |    |    |    |    |    |    |    |
| 5                    | 6         | Br            |   |       |   |    |    |    |    |    |    |    |    |    |    |
|                      |           | bromine       |   |       |   |    |    |    |    |    |    |    |    |    |    |
| 79.9                 | 83.8      |               |   |       |   |    |    |    |    |    |    |    |    |    |    |
| 13                   | 14        | Kr            |   |       |   |    |    |    |    |    |    |    |    |    |    |
|                      |           | krypton       |   |       |   |    |    |    |    |    |    |    |    |    |    |
| 83.8                 | 83.8      |               |   |       |   |    |    |    |    |    |    |    |    |    |    |
| 13                   | 14        | Xe            |   |       |   |    |    |    |    |    |    |    |    |    |    |
|                      |           | xenon         |   |       |   |    |    |    |    |    |    |    |    |    |    |
| 131.3                | 131.3     |               |   |       |   |    |    |    |    |    |    |    |    |    |    |
| 5                    | 6         | At            |   |       |   |    |    |    |    |    |    |    |    |    |    |
|                      |           | astatine      |   |       |   |    |    |    |    |    |    |    |    |    |    |
| 86                   | 86        | Rn            |   |       |   |    |    |    |    |    |    |    |    |    |    |
|                      |           | radon         |   |       |   |    |    |    |    |    |    |    |    |    |    |
| —                    | —         |               |   |       |   |    |    |    |    |    |    |    |    |    |    |
| 69                   | 70        | Yb            |   |       |   |    |    |    |    |    |    |    |    |    |    |
|                      |           | ytterbium     |   |       |   |    |    |    |    |    |    |    |    |    |    |
| 173.1                | 173.1     |               |   |       |   |    |    |    |    |    |    |    |    |    |    |
| 71                   | 71        | Lu            |   |       |   |    |    |    |    |    |    |    |    |    |    |
|                      |           | lutetium      |   |       |   |    |    |    |    |    |    |    |    |    |    |
| 175.0                | 175.0     |               |   |       |   |    |    |    |    |    |    |    |    |    |    |
| 103                  | 103       | Lr            |   |       |   |    |    |    |    |    |    |    |    |    |    |
|                      |           | lawrencium    |   |       |   |    |    |    |    |    |    |    |    |    |    |
| —                    | —         |               |   |       |   |    |    |    |    |    |    |    |    |    |    |
| 101                  | 101       | Md            |   |       |   |    |    |    |    |    |    |    |    |    |    |
|                      |           | mendeleyium   |   |       |   |    |    |    |    |    |    |    |    |    |    |
| —                    | —         |               |   |       |   |    |    |    |    |    |    |    |    |    |    |
| 102                  | 102       | No            |   |       |   |    |    |    |    |    |    |    |    |    |    |
|                      |           | nobelium      |   |       |   |    |    |    |    |    |    |    |    |    |    |
| —                    | —         |               |   |       |   |    |    |    |    |    |    |    |    |    |    |
| 117                  | 117       | Ts            |   |       |   |    |    |    |    |    |    |    |    |    |    |
|                      |           | thorium       |   |       |   |    |    |    |    |    |    |    |    |    |    |
| 116                  | 116       | Lv            |   |       |   |    |    |    |    |    |    |    |    |    |    |
|                      |           | livermorium   |   |       |   |    |    |    |    |    |    |    |    |    |    |
| —                    | —         |               |   |       |   |    |    |    |    |    |    |    |    |    |    |
| 118                  | 118       | Og            |   |       |   |    |    |    |    |    |    |    |    |    |    |
|                      |           | ogganesson    |   |       |   |    |    |    |    |    |    |    |    |    |    |
| —                    | —         |               |   |       |   |    |    |    |    |    |    |    |    |    |    |